RISE PROGRAMME IN INDONESIA

Making public schools less selective: implications for equity and learning in Indonesia

Sirojuddin Arif, **Amanda Beatty**, Emilie Berkhout, Goldy Dharmawan, Menno Pradhan, Daniel Suryadarma, Florischa Tresnatri

RISE conference

23 September 2021

Starting point

What are the impacts of a policy that expands access to selective schools on students across the learning distribution?

Public junior secondary schools in Indonesia are oversubscribed and selective

- Capacity for 50-60% of students in large districts
- Usually politically impossible to expand capacity
- Admissions based on 6th grade leaving exam (UASDA)
- Higher quality, eg value-added in Yogyakarta was ~0.3 SD higher in math, 0.4 SD higher in Indonesian

- Less preferred
- Not free but subsidized (through vouchers) for qualifying students

Yogyakarta has 16 public and 41 private schools

High performing: 13 of Yogyakarta public junior high schools were in the top 100scoring schools on the gr9 leaving exam in Indonesia in 2019

With the goal of expanding access, Yogyakarta changed its admissions policy for junior secondary schools

Share of seats allocated based on:	PRE-ZONING	ZONING 1	ZONING 2	
UASDA score (Yogyakarta residents)	55	15	40	
UASDA score (non- Yogyakarta residents)	20	5	5	
Poverty status (UASDA rank)	25	0	10	
Proximity to school (Yogyakarta residents)	0	75	30	
" Special talents " (UASDA rank)	0	0	10	
Relocation (UASDA rank)	0	5	5	
	May	2018 M	lay 2019	

We use testing data for 3 cohorts of students

We estimate the effect for all students and by UASDA quintile

Percent of students in public school by quintile	PRE-ZONING			ZONING 1			DIFFERENCE	
Quintile 5 (highest)		91 81			-10			
Quintile 4	86			73			-13	
Quintile 3	73			69			-4	
Quintile 2	49			66			+17	
Quintile 1 (lowest)	17			65			+48	
	Publi	с			Private	9		
Standardized UASDA	PZ 0.49	Z1 0.09	D -().40***	PZ -0.73	Z1 -0.1	Diff 9 0.54***	:

We estimate model for student *i* in the pre-zoning cohort

$$Y_i^2 = \alpha_1 Y_i^1 + \alpha_2 X_i + \gamma_s + \varepsilon_i$$

- Y^2 is the grade 8 or grade 7 math or Indonesian SLA score
- *Y*¹ is the standardized UASDA score in the relevant subject
- *X* is a vector of control variables for gender, an asset index, an indicator for whether the mother completed tertiary education and neighborhood

 γ_s are school indicators that capture the average school value-added in the baseline cohort

Simulate grade 9 SLA scores for the zoning cohort, taking a draw from pre-zoning error distribution

We produce simulated and actual impact estimates

$$Y_i^2 = \beta_0 + \beta_1 Z_i + \beta_2 Y_i^1 + \beta_3 X_i + \varepsilon_i$$

Y_i^2 is actual grade 8 test score or predicted score

- *Z* is a dummy variable indicating the first zoning cohort
- β_1 is the difference in learning levels between two cohorts for students in the same neighborhood and baseline score

We compare the predicted and actual impact

- Benchmark estimates for β_1
- What happens when lowest quintile students move into public schools with much higher pre-zoning SVA? How do these schools respond?

Under constant school value-added, we would expect larger positive changes in lower quintiles (1st policy change)

Overall results are worse than predicted. Slight, nonsignificant decline overall but larger changes by quintiles

Slight bounce back effect (more similar to pre-zoning) after the second policy

Why don't we see more positive results? Decline in studentreported tutoring?

■ Public ■ Private ■ Overall

	Public			Private		
	PZ	Z1	Diff	PZ	Z1	Diff
Tutoring outside teaching hrs (%)	70	35	-35***	63	49	-14
Tutoring in minutes per week	99	48	-51**	65	44	-21

Did this policy improve equity? Implications for considering large policy changes in a dynamic system

- Grade 8 SLA difference between Q1 and Q5 1.9 SD \rightarrow 1.5 SD. Mostly at the expense of Q5.
 - Limited effect Q1 students for whom access $17\% \rightarrow 65\%$. Compared to alternative private, learning only goes up a bit for Q1.
 - College-going aspirations \downarrow 5pp overall from base ~80% (\downarrow 8pp Q1)
- Effects are short-term (18 months of schooling)
- When implementing a policy that redistributes students, not safe to assume schools will maintain learning levels with new student composition

Thank You

www.rise.smeru.or.id

0

+6221-3193 6336

rise@smeru.or.id

