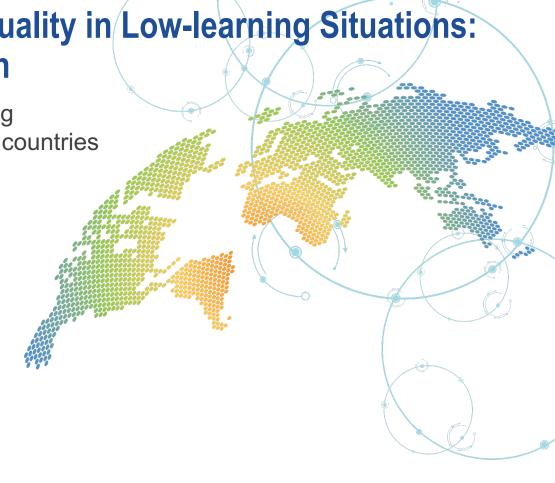
Measuring Learning Inequality in Low-learning Situations: **Metrics and Interpretation**

Panel: Mind the gap: understanding education inequality in developing countries

vCIES 2021

Weds, April 28


Luis Crouch lcrouch@rti.org

Timothy S. Slade

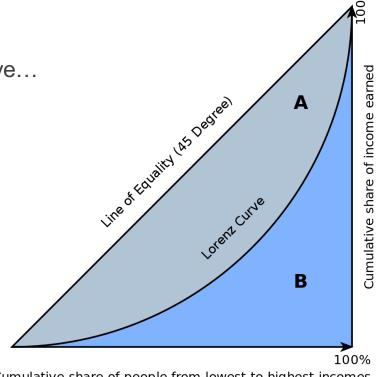
tslade@rti.org

Twitter: @TSSlade @RTI_INTL DEV

Background

- Interest in Learning at the Bottom of the Pyramid (LBOP)
- ASER, PAL, EGRA: not only for one-off status, but also impact
- Primary focus to date: changes in mean performance, not changes in (and drivers of) inequality
- Literature re: large international assessments shows growing interest in measuring inequality
- Two main Qs:
 - Do some early-learning measures and inequality measures work well together?
 - Do high-impact (large change in means) interventions also change inequality?

Hypotheses and "tests"


- o Gini Coefficient: not just for economists!
- ...but what about other tools?
 - Ratios (p90:p10, p75:p25)
 - Coefficient of variation
 - % at {some threshold}
- Defining useful: story is consistent but complementary
- Insight into changes and drivers of changes in inequality in foundational learning from highmean-impact interventions might be interesting and aid in interpreting results

Quick detour: the Gini coefficient & the Lorenz curve

Gini coefficient = the ratio of A to B.

The more "bowed out" the Lorenz curve...

...the greater the Gini coefficient

Cumulative share of people from lowest to highest incomes

About the Data

Country	Number of		Type of data (panel/ repeated cross-section/		
	Students Schools		snapshot)	Grades	Language(s)
Democratic Republic	2,346	230	Unique round	3	Lingala, Tshiluba, Kiswahili
of Congo	7,081	290	Baseline + Endline	4, 6	French
Egypt	2,118 (56)		Baseline + Endline	2	Arabic
Kenya	12,769 (302)		Baseline + Midline + Endline	1, 2	English, Kiswahili
Malawi	5,120 (173)		Baseline + Unique rounds	1, 2, 3	Chichewa
Philippines	6,414 (308)		Baseline + Endline	1,2	Cebuano, Ilokano, Hiligaynon, Maguindanaoan
Uganda	12,146 (620)		Baseline + Endline	1-6	English, and 12 local languages like Luganda, Acoli, and Lugwere

Result #1: Some of these measures "work"

Round	mean	CV	ratio_p90p10	ratio_p75p25	Gini	pct_zero
Baseline	4.8	15.1	•	•	0.826	71.0
Midline	21.6	4.5	•	11.3	0.484	23.0
Endline	19.1	5.6			0.527	28.4

Observe:

- Ginis, coefficient of variation do not break down
- All measures trend in the same direction
- The *p90:p10*, *p75:p25* ratios often break down

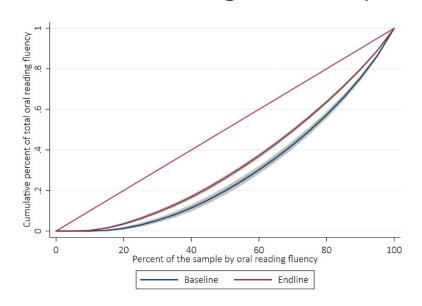
Other cases, not just Kenya

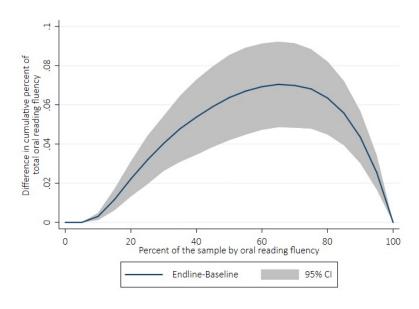
Country	Language	Grade	Phase	Mean ORF	Gini	% at zero
DRC	French	6	Baseline	27.1	0.467	23.3%
			Endline	32.5 ↑	0.458 ↓	16.4% ↓
Uganda	Luganda	2	Baseline	6.2	0.788	65.4%
			Endline	10.4 ↑	0.672 ↓	48.5%↓
Egypt	Arabic	2	Baseline	10.3	0.701	47.6%
			Endline	18.7 ↑	0.661 ↓	34.2%↓
Philippines	Hiligaynon	2	Baseline	31.6	0.451	21.7%
			Endline	27.0 ↓	0.519 ↑	24.6% ↑

Same story:

- Ginis and % at zero go down as means go up
- ...and vice versa (Philippines)
- Relatively larger change in means → relatively larger reduction in Gini (Uganda)

Characteristic of LI countries: lots of kids at zero


- e.g., at endline of an intervention, roughly 1 in 6 Gr. 6 children in the DRC still reading at zero cwpm (French)
- % reading at 0 akin to "learning poverty" (SDG4, World Bank)
- Appealing, common-sense measure
- Doesn't tell the whole story on its own (but still useful)


Inequality reduction and "% at minimum level" are closely related

- Inequality was diminished by midline of the intervention.
- · Observe the change in % at zero: it moves left, along with the Lorenz curve
- ...but the curvature is also different in other ways!

Details on changes in inequality at all initial levels


- Contrast plot: Change in Lorenz curves (endline baseline) at each baseline percentile
- Observe:

Change is not uniform throughout Biggest change at 65th percentile

Inequality reduction and progress in the averages are very related

 Larger improvements in averages → better reduction in inequality

 The relationship gets "dispersed": the greater the change in the mean, the less *predictable* the associated reduction in inequality

There is a bottom of the pyramid at the bottom of the pyramid

		Kenya (PRIMR)							
	SES		Grade 1		Grade 2				
	Quartile	BL	EL	EL-BL	BL	EL	EL-BL		
Gini	1	0.72	0.64	-0.07	0.51	0.45	-0.06		
	2	0.55	0.50	-0.05	0.40	0.39	-0.01		
	3	0.46	0.46	0.00	0.34	0.31	-0.03		
	4	0.44	0.41	-0.02	0.32	0.28	-0.05		
	All	0.53	0.50	-0.04	0.40	0.35	-0.05		

Biggest inequality <u>within</u> the lowest SES group: also where things improved the most ...bottom of the pyramid at the bottom of the pyramid...?

Possible Pedagogical and Policy Implications

- The interventions underlying these data (PRIMR, Tusome, others) explicitly focused on basic skills
- No specific targeting of 'weaker performers' (communities, schools, individuals) within the intervention for additional support
- ...nonetheless, we see significant reductions in inequality
- Designing and administering highly-targeted interventions is complex and difficult opportunity costs are high
- Might focusing on implementing a broad-based, thorough, basics-first intervention with high fidelity be as effective at reducing inequality as a program that explicitly targets narrower subpopulations based on poverty, rurality, gender, etc.?
- We are not sure, but we think these results are suggestive.

Contacts

Thank you!

Luis Crouch

lcrouch@rti.org

luis.crouch@gmail.com

Tim Slade <u>tslade@rti.org</u> <u>tslade@berkeley.edu</u>

Learn more about RTI's work:

Thank You!

Luis Crouch | Email: lcrouch@rti.org

Timothy S. Slade | Email: tslade@rti.org

Twitter: @TSSlade @RTI_INTL_DEV

